
On a real-number line, the coordinates of six points are as follows:

<table>
<thead>
<tr>
<th>Point</th>
<th>Coordinate</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-3</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
</tr>
<tr>
<td>L</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>S</td>
<td>5</td>
</tr>
</tbody>
</table>

1. If Point P moves left 1, the right 5, and back to -1, how far, in units, did Point P move altogether? (10)

2. What are the combined lengths of A to E and C to P? (8) 4 + 4

3. What segment has the same length as LC? (LA, AL)

For problems 4 and 5, use the figure below.

4. Points R & O lie on FG as shown. The length of FG is 24 units; FO is 14 units long; RG is 18 units long. How many units long, if it can be determined, is RO? (3)

5. Points R & O line on FG as shown. The length of FG is 32 units; FO is 24 units long; RG is 20 units long. How many units long, if it can be determined, is RO? (12)

6. On a real-number line, what is the midpoint of -6 and 14? (4) \(\frac{-6 + 14}{2} = 4 \)

ACT Prep: Part 2. Show sufficient work.

1. AJ’s Rentals charge $120 a day for a truck rental plus $.25 per mile for each mile that the truck is driven. Write an expression for the cost of renting the truck for one day and driving “n” miles.

\[120 + .25n \]

2. Write and solve the equation: An integer, \(q \), is added to 4. That sum is then multiplied by 3. This result is 15 more than twice the original integer, \(q \).

\[3(q + 4) = 2q + 15 \]

3. If \(x = -3 \), what is the value of \(\frac{x^2 + 1}{x - 1} \)? (\(\frac{-5}{2} \))

4. Fill in the cell so that each row, diagonal, and column are equal.

<table>
<thead>
<tr>
<th>2y</th>
<th>9y</th>
<th>-2y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1y</td>
<td>3y</td>
<td>?</td>
</tr>
<tr>
<td>8y</td>
<td>-3y</td>
<td>4y</td>
</tr>
</tbody>
</table>

5. The expression \(x(y + z) \) is equivalent to:
 a. \(xy + z \)
 b. \(xy + xz \)
 c. \(xyz \)

6. Express \(z \) in terms of \(x \), if \(x^5 = y \) and \(y^2 = z \).
 d. \(z = x^2 \)
 e. \(z = x^5 \)
 f. \(z = x^{10} \)
Name the following in \(\odot G \).
1. the minor arcs \(\overline{QR}, \overline{PS}, \overline{RU}, \overline{UT}, \overline{QT} \)
2. the major arcs \(\overline{QBT}, \overline{STO}, \overline{TUB} \)
3. the semicircles \(\overline{RST}, \overline{STU}, \overline{KQT}, \overline{SKU} \)

Find the measure of each arc in \(\odot B \).
4. \(\overline{GJ} \) 90°
5. \(\overline{HI} \) 29°
6. \(\overline{HII} \) 180°
7. \(\overline{GJI} \) 241°
8. \(\overline{GH} \) 270°
9. \(\overline{GJH} \) 270°
10. \(\overline{HGI} \) 180°
11. \(\overline{GH} \) 90°
12. \(\overline{GHI} \) 119°

Find the circumference of each circle. Leave your answers in terms of \(\pi \).
13. \(2\pi (16) \) \(32\pi \) in
14. \(2\pi (11) \) \(22\pi \) m
15. \(2\pi (6.8) \) \(13.6\pi \) m

16. The wheels on Reggie’s bike each have a 20-in. diameter. His sister’s mountain bike has wheels that each have a 26-in. diameter. To the nearest inch, how much farther does Reggie’s sister’s bike travel in one revolution than Reggie’s bike?

\[\frac{2\pi (13)}{2\pi (10)} \approx 19 \text{ in} \]

17. A Ferris wheel has a 50-m radius. How many kilometers will a passenger travel during a ride if the wheel makes 10 revolutions? Round your answer to the nearest tenth of a kilometer.

\[10 \cdot 2\pi (5) = 3.1 \text{ m} \]

Find the length of each darkened arc. Leave your answer in terms of \(\pi \).
18.
19.
20.
21.
22.
23.

Find each indicated measure for \(\odot Y \).
24. \(m \angle EYD \) 90°
25. \(m \angle EAB \) 180°
26. \(m \angle DB \) 140°
27. \(m \angle DYC \) 70°
28. \(m \angle EAC \) 250°
29. \(m \angle BDA \) 320°